Reflexión y refracción de la luz

Experientia docet Ondas Artículo 21 de 27

Imagen: V Photography and Art (flickr)

¿Qué ocurre cuando la luz que viaja por un medio (por ejemplo, el aire) alcanza el límite de otro medio (por ejemplo, el vidrio)? Las respuestas a esta pregunta dependen de si se utiliza el modelo de partícula o el de onda para la luz. ¿Qué implica cada uno y cuál es mejor? ¿Cómo explican el siguiente hecho experimental (Figura 1)?

Figura 1. Un haz de luz llega con un ángulo de 60º al límite entre dos medios; vemos que una parte es reflejada (también con un ángulo de 60º) y otra pasa al medio 2 con un cambio de dirección. Fuente: Wikimedia Commons

El modelo de onda ya lo hemos tratado aquí para la reflexión y aquí para la refracción. Recordemos las conclusiones principales aplicadas a la luz:

1. Un rayo de luz no es otra cosa que una línea perpendicular a las líneas de cresta de una onda. Un rayo representa la dirección en la que viaja un tren de ondas.

2. En la reflexión, el ángulo de incidencia(Θi) es igual al ángulo de reflexión (Θr), esto es, Θi = Θr

3. La refracción implica un cambio de la longitud de onda y velocidad de la onda a medida que pasa a otro medio. Cuando la velocidad disminuye, la longitud de onda disminuye y el rayo gira en una dirección hacia una línea perpendicular al límite entre los medios. Este giro hacia la perpendicular se observa, por ejemplo, cuando un rayo de luz pasa del aire al vidrio.

Figura 2. El modelo de ondas en acción. Fuente: Cassidy Physics Library

¿Cómo explicar las mismas observaciones mediante el modelo de partículas? Primero tenemos que considerar la naturaleza de la superficie del vidrio. Aunque aparentemente homogénea, estamos en realidad ante una superficie rugosa: un microscopio lo suficientemente potente mostraría que tiene multitud de colinas y valles. Si las partículas de luz fueran similares a pequeñas bolitas de materia, al golpear una superficie tan rugosa lo que cabría esperar es que se dispersasen en todas direcciones. Por tanto, no serían reflejadas ni refractadas. Por lo tanto, hay que refinar el modelo. Newton argumentó que en realidad debe haber “algún rasgo del cuerpo que esté disperso uniformemente sobre su superficie y por el cual este actúa sobre el rayo sin contacto inmediato (some feature of the body which is evenly diffused over its surface and by which it acts upon the ray without immediate contact).

Vamos a seguir la idea de Newton, a ver a donde nos lleva. De entrada, en el caso de la reflexión, la fuerza actuante tendría que ser una que repela las partículas de luz. Pero claro, por la misma regla de tres, es necesaria una una fuerza que atraiga a las partículas de luz en lugar de repelerlas para explicar la refracción. Esto parece que se complica para el modelo de partículas. O no. Veamos

Cuando una partícula de luz se acerca a un límite con otro medio, primero tendría que superar la fuerza repelente. Si lo consiguiera, entonces encontraría una fuerza atractiva en el medio que la atraería hacia el medio. Dado que la fuerza atractiva sería un vector perpendicular a la superficie del medio, tomando como referencia la dirección del movimiento de la partícula ese vector tendría un componente en la dirección del movimiento original de la partícula, lo que implica que la velocidad de la partícula tendría que aumentar. Otra consecuencia es que, si el rayo de partículas se moviera con un ángulo oblicuo al límite, cambiaría de dirección a medida que entrase en el medio, girando hacia la línea perpendicular al límite.

De acuerdo con el modelo de partículas*, por lo tanto, podríamos afirmar lo siguiente:

1. Un rayo representa la dirección en la que se mueven las partículas.

2. En la reflexión, los ángulos de incidencia y reflexión son iguales. Esta predicción se puede derivar aplicando la ley de conservación del momento a partículas repelidas por una fuerza.

3. La refracción implica un cambio de velocidad de las partículas a medida que entran en otro medio. En concreto, cuando actúa una fuerza atractiva, la velocidad aumenta y el rayo cambia de dirección al entrar en el medio.

Figura 3. El modelo de partículas en acción. Fuente: Cassidy Physics Library

Comparemos estas características del modelo de partículas con las características correspondientes del modelo de onda. La única diferencia está en la velocidad predicha para un rayo refractado. Observamos que un rayo se curva hacia la línea perpendicular cuando la luz pasa del aire al vidrio. El modelo de partículas predice que la luz tiene una velocidad mayor en el segundo medio. El modelo de ondas predice que la luz tiene una velocidad menor.

Podríamos pensar que no hay nada más fácil para averiguar qué modelo es el más correcto: diseñar un experimento para determinar qué predicción es correcta. Todo lo que uno tiene que hacer es medir la velocidad de la luz después de que haya entrado en el vidrio o en el agua y compararla con la velocidad de la luz en el aire. Pero no. A a finales del siglo XVII y principios del siglo XVIII, cuando Huygens argumentaba a favor del modelo de onda y Newton apoyaba el modelo de partículas, ningún experimento de este tipo era posible. La única forma disponible de medir la velocidad de la luz era la astronómica.

No sería hasta mediados del siglo XIX que Armand H.L. Fizeau y Jean B.L. Foucault conseguirían medir la velocidad de la luz en el agua. Los resultados concuerdan con las predicciones del modelo de onda: la velocidad de la luz es menor en el agua que en el aire.

Los experimentos de Foucault-Fizeau de 1850 se consideraron como el último clavo en el ataúd del modelo newtoniano de partículas para la luz, ya que, cuando se realizaron estos experimentos, buena parte de la comunidad científica ya había aceptado el modelo de onda por otras razones. Algunas de estas se derivaron del trabajo del científico inglés Thomas Young, y serán las que veamos a continuación.

Nota:

* Implícitamente en el argumento está la asunción sobre el límite del tamaño de las «partículas» de luz de Newton. Las partículas deben ser al menos tan pequeñas como las irregularidades en la superficie de un vidrio. Si fuesen mayores tendríamos el mismo efecto que una pelota de tenis rebotando en el rugoso suelo de hormigón, solo reflexión.

Sobre el autor: César Tomé López es divulgador científico y editor de Mapping Ignorance

3 comentarios

Deja un comentario

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *