La hipótesis protón-electrón de la composición nuclear

Experientia docet El núcleo Artículo 22 de 23

Foto: Tanja Cotoaga / Unsplash

Al describir el problema de la estructura nuclear, terminamos planteándonos una pregunta: ¿Podría un núcleo de masa A consistir en un número A de protones? La respuesta corta es no.

Si este fuera el caso, la carga del núcleo sería de A unidades, pero, a excepción del hidrógeno, sabemos que la carga nuclear Z es siempre menor que A, generalmente menor que A/2. Para sortear esta dificultad, se asumió desde el principio que, además de los protones, los núcleos atómicos contenían los electrones suficientes para cancelar la carga positiva de los protones adicionales; es decir, se suponía que contenían (A-Z) electrones. Después de todo, los núcleos emiten electrones al desintegrarse, por lo que, aparentemente, los electrones deben existir dentro del núcleo. Estos electrones contribuirían con solo una pequeña cantidad a la masa del núcleo, pero junto con los protones harían que la carga neta fuera igual a Z unidades, como era necesario.

Parecía plausible, entonces, considerar que el átomo consistía en un núcleo formado por A protones y (A-Z) electrones, con Z electrones adicionales fuera del núcleo para obtener como resultado un átomo eléctricamente neutro. Por ejemplo, un átomo de oxígeno-16 tendría un núcleo con 16 protones y 8 electrones, con 8 electrones adicionales fuera del núcleo. Este modelo del núcleo se conoce como la hipótesis protón-electrón de la composición nuclear. [1]

La hipótesis protón-electrón parecía ser coherente con la emisión de partículas alfa y beta por los átomos de las sustancias radiactivas. Al incluir electrones en el núcleo la explicación de la desintegración beta no era un problema: cuando el núcleo alcanza un estado determinado simplemente expulsa uno de sus electrones. También parecía razonable que se pudiera formar una partícula alfa en el núcleo mediante la combinación de cuatro protones y dos electrones; una partícula alfa podría existir ya preformada en el núcleo, o formarse en el instante de la emisión.

Aunque la hipótesis protón-electrón era satisfactoria en algunos aspectos, el desarrollo de la mecánica cuántica, entre otros problemas, obligó a descartarla. Una de las dificultades más serias surge del principio de incertidumbre de Heisenberg y de la teoría de la relatividad de Einstein: el confinamiento de un electrón en un espacio tan pequeño como el núcleo daría lugar a la circunstancia de que a veces la velocidad del electrón sería mayor que la velocidad de la luz, lo que no es posible según la teoría de la relatividad especial.

¿Cómo podría explicarse el hecho de que los electrones no puedan estar confinados en el núcleo, pero emerjan del núcleo en la desintegración? Heisenberg contaba la siguiente anécdota:

Estaban un día él y sus asistentes discutiendo este problema mientras tomaban un café enfrente del edificio que albergaba la piscina cubierta de la ciudad. El movimiento de gente que entraba y salía del mismo sugirió a Heisenberg un posible nuevo enfoque del problema. “Ves a la gente entrando en el edificio completamente vestida, y la ves salir completamente vestida. ¿Pero significa eso que también nada completamente vestida?” O sea, ves electrones que salen del núcleo y, en otras ocasiones, ves electrones que son capturados por el núcleo, pero eso no significa que permanezcan como electrones mientras están en el núcleo. Quizás los electrones se creasen en el proceso de emisión desde el núcleo. Era necesario un modelo completamente nuevo.

Notas:

[1] La hipótesis protón-electrón es similar a una idea anterior sugerida por el médico inglés William Prout en 1815. Sobre la base del pequeño número de masas atómicas conocidas entonces, Prout propuso que todas las masas atómicas son múltiplos de la masa atómica del hidrógeno y que, por tanto, todos los elementos podrían estar formados por hidrógeno. La hipótesis de Prout fue descartada cuando, a finales del siglo XIX, se encontró que las masas atómicas de algunos elementos eran, sin ningún género de dudas, fraccionarias, en concreto las de cloro (35,46 unidades) y cobre (63,54 unidades). Sin embargo, con el descubrimiento de los isótopos se vio que las masas atómicas fraccionarias de cloro y cobre, como la del neón, surgen porque estos elementos son mezclas de isótopos, y cada isótopo sí tiene una masa atómica cercana a un número natural.

Sobre el autor: César Tomé López es divulgador científico y editor de Mapping Ignorance

Deja un comentario

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *